#### Neglected and underutilised crop species (NUCS):

Grass pea (Lathyrus sativus)

Tamara Lebrecht

**Critical Scientists Switzerland** 





saatgutpolitik & wissenschaft

### What are NUCS?

- Wild or semi-domesticated varieties adapted to particular environments
- Mainly traditional knowledge about their cultivation and use
- Little attention paid to by agricultural researchers, plant breeders, policymakers
- Typically not traded as commodities
- Tremendous potential to diversify agricultural production systems and to make them more resilient to climate change



# Grass pea (Lathyrus sativus)

- Cultivated on 1.5 Mio hectares (Ethiopia, Mediterranean, South- and West Asia)
- Cultivated for grains (animal feed, human nutrition) & whole plant (fodder, green manure)
- Climate smart insurance crop (high resistance to drought, heat stress, water stagnation)
- Less susceptible to diseases/pests
- Very high nitrogen fixaton, resistant and penetrating root system
- High protein content (18 34%)
- High content of essential amino acids (Lhomoarginine)

Campbell 1997, Kumar et al. 2011, Lambein et al. 2019, Mitiku et al. 2015



## Why is Grass pea a NUCS?

- Grass pea contains small amounts of the neurotoxic substance oxalyldiaminopropionic acid (ODAP)
  - Overconsumption (4+ month, exclusively grass pea) can cause nervous disease lathyrism
  - Today, grass pea lines with low ODAP contents are known and approved for cultivation in various countries.
  - Processing can further reduce the ODAP content
- Yield fluctuation / lodging



### Why grass pea in Switzerland?

- Demand for Swiss grain legumes expected to grow
  - as of 2022 domestic protein feed required for ruminants in CH organic sector
  - Demand for meat substitutes is increasing (sales increased from CHF 60 million in 2016 to CHF 117 million in 2020)
  - Currently, almost all plant-based proteins for domestic meat substitute production are imported
- FOAG predicts more doughts and heatwaves for Switzerland
- One goal of the strategy plant breeding 2050 is to support the adaptation of agriculture to CC
- Grass pea is considered one of the most climateresilient crops
- Diversification of Swiss grain legumes important in light of Climate Change

BLW 2016, 2021

# Central questions of the project (2021 – 2025)

| Agronomy/breeding                                                                    | Nutritional physiology and processing                                                                                                                 | Socioeconomy                                                                                                      |
|--------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|
| Is grass pea suitable for agricultural production in Switzerland?                    | How high is the protein and ODAP content of selected genotypes? How does the protein pattern and amino acid spectrum of selected genotypes look like? | Is growing grass pea in Switzerland profitable?                                                                   |
| Which form of cultivation is best suited for grass pea (pure culture/intercropping)? | Is grass pea suitable as a food in Switzerland?                                                                                                       | What processing possibilities exist in Switzerland for mixtures with grass peas?                                  |
| Which genotypes are best suited for which type of use (food, fodder, green manure)?  | To what extent can antinutritive substances (especially ODAP) be reduced in processing?                                                               | Where is grass pea offered/consumed in<br>Europe today? In what form? Where do these<br>grass peas come from?     |
| Which mixture partners are best suited for mixed cultivation with grass pea ?        | What is the nutritional quality and processability of grass pea? How high is the protein yield? How is the quality of the protein powder?             | How do experts assess the market potential in<br>Switzerland? Which specific products could be<br>promising here? |



### Genotype screening 2021

- 532 Genotypes were screened at different sites
  - 254 IPK Gatersleben/Germany
  - 200 ICARDA/Libanon
  - 50 National Centre for Plant Genetic Resources: Polish Genebank/Polen;
  - rest from seed savers, seed producers, personal contacts
- Difficulties: extremely wet summer with multiple hail storms
- 100 Genotypes were selected based on qualitative phenotypic traits (including field emergence, soil cover, stability, beginning of flowering, height etc.) and harvest data



#### Intercropping and lab trials 2022

- Genotype screening (100 genotypes, 2 reps.)
- Different mixtures of grasspea with oat, triticale and lupine in different ratios will be compared (3 sites, 3 repetitions)
- Reference genotypes will be analysed for composition (protein patterns, amino acid spectrum, tannins, phytic acid, polyphenols, ODAP content before and after processing)
- Reference genotypes will be characterised with regard to industrial processability (Protein yield, production of protein powders, extrusion tests)

## References

- BLW 2016. Strategie Pflanzenzüchtung 2050. In: Eidgenössisches Departement für Wirtschaft, B. u. F. W. (ed.). Bundesamt für Landwirtschaft (BLW), Bern, Schweiz.
- BLW. (2021). *Die Nachfrage nach Fleischersatzprodukten steigt*. Bundesamt für Landwirtschaft. <u>https://www.blw.admin.ch/blw/de/home/services/medienmitteilungen.msg-id-83512.html</u>
- Campbell, C. G., Heller, J., & Engels, J. 1997. Grass pea. Lathyrus sativus L.
- Kumar, S., Bejiga, G., Ahmed, S., Nakkoul, H., & Sarker, A. (2011). Genetic improvement of grass pea for low neurotoxin (β-ODAP) content. *Food and Chemical Toxicology: An International Journal Published for the British Industrial Biological Research Association*, 49(3), 589–600. <u>https://doi.org/10.1016/j.fct.2010.06.051</u>
- Lambein, F., Travella, S., Kuo, Y.-H., Van Montagu, M., & Heijde, M. (2019). Grass pea (Lathyrus sativus L.): Orphan crop, nutraceutical or just plain food? *Planta*, *250*(3), 821–838. https://doi.org/10.1007/s00425-018-03084-0
- Mitiku, D., Abera, S., & Abera, T. 2015. Effects of Processing on Nutritional Composition and Anti-Nutritional Factors of Grass pea (Lathyrus Sativus L): A Review. *Food Science and Quality Management*, 36.
- Padulosi, S., Thompson, J., & Rudebjer, P. 2013. Fighting poverty, hunger and malnutrition with neglected and underutilized species (NUS): Needs, challenges and the way forward. Biodiversity International, Rome